156 research outputs found

    Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases

    Get PDF
    Gravitational waves emitted by coalescing compact objects carry information about the spin of the individual bodies. However, with present detectors only the mass-weighted combination of the components of the spin along the orbital angular momentum can be measured accurately. This quantity, the effective spin χeff\chi_{\mathrm{eff}}, is conserved up to at least the second post-Newtonian order. The measured distribution of χeff\chi_{\mathrm{eff}} values from a population of detected binaries, and in particular whether this distribution is symmetric about zero, encodes valuable information about the underlying compact-binary formation channels. In this paper we focus on two important complications of using the effective spin to study astrophysical population properties: (i) an astrophysical distribution for χeff\chi_{\mathrm{eff}} values which is symmetric does not necessarily lead to a symmetric distribution for the detected effective spin values, leading to a \emph{selection bias}; and (ii) the posterior distribution of χeff\chi_{\mathrm{eff}} for individual events is \emph{asymmetric} and it cannot usually be treated as a Gaussian. We find that the posterior distributions for χeff\chi_{\mathrm{eff}} systematically show fatter tails toward larger positive values, unless the total mass is large or the mass ratio m2/m1m_2/m_1 is smaller than 1/2\sim 1/2. Finally we show that uncertainties in the measurement of χeff\chi_{\mathrm{eff}} are systematically larger when the true value is negative than when it is positive. All these factors can bias astrophysical inference about the population when we have more than 100\sim 100 events and should be taken into account when using gravitational-wave measurements to characterize astrophysical populations.Comment: An online generator for synthetic χeff\chi_{\mathrm{eff}} posteriors can be found at: http://superstring.mit.edu/welcome.html Comments are welcom

    The Vulnerability and Resilience of Seagrass Ecosystems to Marine Heatwaves in New Zealand: A Remote Sensing Analysis of Seascape Metrics Using PlanetScope Imagery

    Get PDF
    Seagrasses are foundation species that provide ecosystem functions and services, including increased biodiversity, sediment retention, carbon sequestration, and fish nursery habitat. However, anthropogenic stressors that reduce water quality, impose large-scale climate changes, and amplify weather patterns, such as marine heatwaves, are altering seagrass meadow configurations. Quantifying large-scale trends in seagrass distributions will help evaluate the impacts of climate drivers on their functions and services. Here, we quantified spatiotemporal dynamics in abundances and configurations of intertidal and shallow subtidal seagrass (Zostera muelleri) meadows in 20 New Zealand (NZ) estuaries that span a 5-year period (mid/late 2016–early 2022) just before, during and after the Tasman Sea 2017/18 marine heatwave, the warmest summer ever recorded in NZ. We used high-resolution PlanetScope satellite imagery to map interseasonal seagrass extent and quantify seascape metrics across 20 estuaries along a latitudinal gradient spanning 12° in NZ. We also explored the association of changes in seagrass metrics with satellite-derived predictors such as sea surface temperature (SST), SST anomaly (SSTa), water column turbidity, and nutrient concentration. Our analyses revealed that NZ seagrass meadows varied in areal extent between years and seasons, but with no clear patterns over the 5-year period, implying resilience to large-scale stressors like the 2017/18 marine heatwave. Small-scale patterns were also dynamic, for example, patch sizes and patch configurations differed across estuaries, seasons, and years. Furthermore, seagrass patches expanded in some estuaries with increasing SST and SSTa. These results highlight dynamic seagrass patterns that likely affect local processes such as biodiversity and carbon sequestration. Our analyses demonstrate that a combination of high-resolution satellite remote sensing and seascape metrics is an efficient and novel approach to detect impacts from anthropogenic stressors, like eutrophication and climate changes, and climate extremes like cyclones and heatwaves

    Building Environmentally Sustainable Communities: A Framework for Inclusivity

    Get PDF
    Reviews literature on past inequitable and unsustainable urban development and visions for linking sustainability, opportunity, and inclusion. Analyzes possible metrics for measuring sustainability and access as well as next steps for policy

    Onchocerciasis in the Americas: from arrival to (near) elimination

    Get PDF
    Onchocerciasis (river blindness) is a blinding parasitic disease that threatens the health of approximately 120 million people worldwide. While 99% of the population at-risk for infection from onchocerciasis live in Africa, some 500,000 people in the Americas are also threatened by infection. A relatively recent arrival to the western hemisphere, onchocerciasis was brought to the New World through the slave trade and spread through migration. The centuries since its arrival have seen advances in diagnosing, mapping and treating the disease. Once endemic to six countries in the Americas (Brazil, Colombia, Ecuador, Guatemala, Mexico and Venezuela), onchocerciasis is on track for interruption of transmission in the Americas by 2012, in line with Pan American Health Organization resolution CD48.R12. The success of this public health program is due to a robust public-private partnership involving national governments, local communities, donor organizations, intergovernmental bodies, academic institutions, non-profit organizations and the pharmaceutical industry. The lessons learned through the efforts in the Americas are in turn informing the program to control and eliminate onchocerciasis in Africa. However, continued support and investment are needed for program implementation and post-treatment surveillance to protect the gains to-date and ensure complete elimination is achieved and treatment can be safely stopped within all 13 regional foci

    Impact of the introduction of pneumococcal conjugate vaccine on immunization coverage among infants

    Get PDF
    Background The introduction of pneumococcal conjugate vaccine (PCV) to the U.S. recommended childhood immunization schedule in the year 2000 added three injections to the number of vaccinations a child is expected to receive during the first year of life. Surveys have suggested that the addition of PCV has led some immunization providers to move other routine childhood vaccinations to later ages, which could increase the possibility of missing these vaccines. The purpose of this study was to evaluate whether introduction of PCV affected immunization coverage for recommended childhood vaccinations among 13-month olds in four large provider groups. Methods In this retrospective cohort study, we analyzed computerized data on vaccinations for 33,319 children in four large provider groups before and after the introduction of PCV. The primary outcome was whether the child was up to date for all non-PCV recommended vaccinations at 13 months of age. Logistic regression was used to evaluate the association between PCV introduction and the primary outcome. The secondary outcome was the number of days spent underimmunized by 13 months. The association between PCV introduction and the secondary outcome was evaluated using a two-part modelling approach using logistic and negative binomial regression. Results Overall, 93% of children were up-to-date at 13 months, and 70% received all non-PCV vaccinations without any delay. Among the entire study population, immunization coverage was maintained or slightly increased from the pre-PCV to post-PCV periods. After multivariate adjustment, children born after PCV entered routine use were less likely to be up-to-date at 13 months in one provider group (Group C: OR = 0.5; 95% CI: 0.3 – 0.8) and were less likely to have received all vaccine doses without any delay in two Groups (Group B: OR = 0.4, 95% CI: 0.3 – 0.6; Group C: OR = 0.5, 95% CI: 0.4 – 0.7). This represented 3% fewer children in Group C who were up-to-date and 14% (Group C) to 16% (Group B) fewer children who spent no time underimmunized at 13 months after PCV entered routine use compared to the pre-PCV baseline. Some disruptions in immunization delivery were also observed concurrent with temporary recommendations to suspend the birth dose of hepatitis B vaccine, preceding the introduction of PCV. Conclusion These findings suggest that the introduction of PCV did not harm overall immunization coverage rates in populations with good access to primary care. However, we did observe some disruptions in the timely delivery of other vaccines coincident with the introduction of PCV and the suspension of the birth dose of hepatitis B vaccine. This study highlights the need for continued vigilance in coming years as the U.S. introduces new childhood vaccines and policies that may change the timing of existing vaccines

    Characterization of the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infection

    Get PDF
    Abstract. The development of the humoral immune response against porcine reproductive and respiratory syndrome (PRRS) virus was monitored by an indirect fluorescent antibody (IFA) test, immunoperoxidase monolayer assay (IPMA), enzyme-linked immunosorbent assay (ELISA), and serum virus neutralization (SVN) test over a 105-day period in 8 pigs experimentally infected with ATCC strain VR-2402. Specific antibodies against PRRS virus were first detected by the IFA test, IPMA, ELISA, and the SVN test 9-11, 5-9, 9-13, and 9-28 days postinoculation (PI), respectively, and reached their maximum values by 4-5, 5-6, 4-6, and 10-11 weeks PI, respectively, thereafter. After reaching maximum value, all assays showed a decline in antibody levels. Assuming a constant rate of antibody decay, it was estimated by regression analysis that the ELISA, IFA, IPMA, and SVN antibody titers would approach the lower limits of detection by approximately days 137, 158, 324, and 356 PI, respectively. In this study, the immunoperoxidase monolayer assay appeared to offer slightly better performance relative to the IFA test, ELISA, and SVN test in terms of earlier detection and slower rate of decline in antibody titers. Western immunoblot analysis revealed that antibody specific for the 15-kD viral protein was present in all pigs by 7 days PI and persisted throughout the 105-day observation period. Initial detection of antibodies to the 19-, 23-, and 26-kD proteins varied among pigs, ranging from 9 to 35 days PI. Thereafter, the antibody responses to these 3 viral proteins of PRRS virus continued to be detected throughout the 105-day study period. These results clearly indicate that the 15-kD protein is the most immunogenic of the 4 viral proteins identified and may provide the antigenic basis for the development of improved diagnostic tests for the detection of PRRS virus antibodies
    corecore